If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-4X=164
We move all terms to the left:
X^2-4X-(164)=0
a = 1; b = -4; c = -164;
Δ = b2-4ac
Δ = -42-4·1·(-164)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{42}}{2*1}=\frac{4-4\sqrt{42}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{42}}{2*1}=\frac{4+4\sqrt{42}}{2} $
| 110=6+(3b)+b | | -6a-12=8a-72 | | 8x-7=-5x+19 | | (13x^2-34x+12)/(3x-2)=x-1 | | 36-10q=8q | | 3(x+8x)=12 | | 1/2(x−42)=1+6x | | 3x-(-36)=-27 | | 3x+1.5x^2=72 | | 2w-8=18 | | 152+a+a=360 | | 12x-10+110=360 | | 2y/3=54 | | 12x-10+110=180 | | 22+x=110 | | x+x+x=110 | | (10x-14)+(3x+11)+(3x+15)=180 | | 2^2020-(x+2^2020)=-5x+16 | | 3x-80=2x+40 | | Y-6+51=72+x-5 | | x-5+51=72+Y-6 | | (3n^2)-4n=5 | | 12x-2+11x+9=180 | | X^2+x^2=10^2 | | 6x+6=4x-14 | | 6x-21=x-2 | | (7x-6)+(3x+13)+(2x+19)=180 | | 6x-21=x-12 | | 5.42x-6.19=2.72x+9.86 | | 2(3x+5)+2(9x-170)=360 | | 8(4-x-)=7x+2 | | 1.1x+1.2-54=-10 |